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Abstract 
In this report model predictive control (MPC) is applied to a simulated, spherical, point 
absorber wave energy converter to maximize energy extraction. Constraints are applied to 
the buoy's displacement and the power take-off (PTO) generator force. The WEC's "truth” 
model uses nonlinear Froude-Krylov (FK) hydrostatic and hydrodynamic forces. This is in 
contrast with previous studies where linear approximations are used in the form of a 
hydrostatic stiffness force and a wave excitation force. The nonlinear forces become 
significant when the vertical displacement of the buoy exceeds about 40% of the buoy's 
radius. Two versions of MPC are compared where optimal PTO forces are calculated based 
on (1) a linear model, called LMPC, and (2) the nonlinear model, called NLMPC. For the 
cases considered, the energy absorbed using NLMPC is greater than for LMPC. 
Furthermore, the linear MPC solution, when applied to the truth model.  
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1 Introduction  
Coal, natural gas, petroleum, and diesel fuels, used in electricity production, release carbon dioxide, 
carbon monoxide, sulfur dioxide with detrimental effects on the environment. According to US 
Energy Information Administration (EIA), renewable energy will be the most used energy by the 
year 2050 [1]. Wave energy converters can harvest energy 90% of the time [2]. Water wave energy 
is one of the renewable energy sources which is periodic and predictable and travels large distances 
with little to no energy loss [3]. To harvest wave energy, research ongoing to develop different types 
of Wave Energy Converters (WECs) such as oscillating water columns, overtopping devices, point 
absorbers, and surging devices to name a few [3].  
A WEC's power take-off (PTO) converts wave kinetic energy into electrical energy. It has 
been shown that to maximize energy extraction a WEC's PTO should be controlled,  where 
at times it is used as an actuator instead of its primary role as a generator [4]. Candidate 
control strategies, such as latching and impedance matching, have difficulties in providing 
state-constrained solutions where the buoy is expected to move greater than is physically 
possible. Here, state constrained optimization is used to implement these constraints using 
Model Predictive Control (MPC) where the cost function is the net energy extracted over 
the control horizon.  

Model Predictive Control – 

One of the earliest papers on MPC was by Gilbert et al. where they postulated using an 
optimization process to affect closed-loop control. At each control update time, an optimal 
control problem is solved T seconds into the future. The first, zero-order held, optimal 
actuator command is then sent to the system as the input. The process continues as long as 
the control system is in operation. While some dynamic systems have closed-form optimal 
control solutions, most do not. Since numerical optimal control solutions can be 
computationally slow, implementation of MPC has only become feasible in recent years 
with the advent of high-performance embedded processors and fast optimization solvers. 
An attractive feature of MPC is that the optimal control solution can be subject to the 
physical constraints of the system. However, this makes finding an optimal solution in real-
time a potential problem. Feasibility may be all that can be achieved at times.  

Control systems often seek to reject external disturbances. In contrast, a WEC controller 
must exploit the wave forces, which can be viewed as a disturbance, to extract energy. 
Thus, knowing the wave forces, over the control horizon, helps with the implementation of 
a WEC MPC solution. Forecasting wave excitation forces has been accomplished using 
several methods including a Kalman filter [6], autoregressive (AR) models [7-8], and 
neural networks [9]. Since the focus of this study is on the differences between linear MPC 
(LMPC) and nonlinear MPC (NLMPC), the wave force prediction problem is removed by 
considering perfect knowledge of wave elevation, not wave forces, over the control 
horizon. The goal of MPC is to maximize energy flow into WEC. Based on known future 
excitation force, motion, and PTO force constraints, the objective function of the 
optimization problem is set to maximize the absorption of incident wave energy.  
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Researchers have used a linear model of wave radiation force i.e. system that uses a simple 
linear damper [6]. But the research has been done on implementing radiation convolution 
terms used in the state-space form [5][10][11]. This report will use a simple linear model 
of wave radiation with “B” radiation damping coefficient like the one used by Brekken for 
both LMPC and NLMPC [6]. 

NLMPC uses actual nonlinear Froude-Krylov forces subjected to WEC buoy. The 
nonlinear FK forces are nonlinear hydrostatic and hydrodynamic forces. In LMPC, the 
nonlinear hydrostatic and hydrodynamic forces are linearized and solved around the 
equilibrium position of the buoy. One of the reasons to use such a linearized model is to 
avoid simulating computationally expensive problem. 

But as the problem is solved around the equilibrium position of the buoy, at the higher 
amplitudes of motion, error in actual hydrostatic and hydrodynamic forces buoy is 
subjected and linearized FK forces used by LMPC increases. This error is not captured by 
the LMPC and gives incorrect control force to WEC. LMPC, controlling the nonlinear 
WEC plant gives less amount of energy absorbed. This is the potential problem with using 
LMPC to control WEC. 

To avoid this problem, NLMPC uses nonlinear FK  forces [11]. The NLMPC model uses 
the instantaneous wetted surface area to calculate the exact nonlinear hydrostatic stiffness 
force and nonlinear hydrodynamic force. NLMPC thus takes into account the nonlinear 
hydrostatic and hydrodynamic forces subjected to WEC buoy and calculates the correct 
PTO force to keep buoy motion within defined state constraints and maximize the energy 
extraction.  

NLMPC proves to be a good choice for controlling WEC subjected to high amplitudes of 
motion.  

1.1 Assumptions  
A spherical, point absorber WEC is considered. The main assumptions exploited are –  

1. The PTO is ideal where the energy flow into the WEC is given by 

𝐸𝐸 = −� 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝. 𝑧̇𝑧
𝑇𝑇

0
 𝑑𝑑𝑑𝑑 

where 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 is the PTO force and 𝑧̇𝑧 is the WEC's vertical speed. The positive sense 
of both quantities is upward.  
 

2. The buoy's incident wave time history is known in the future consistent with the 
control horizon. To put this into perspective, the control horizon in the example 
below is set to 3 seconds or half wave period. 
 

3. The radiation force of waves is a linear approximation and radiation damping is 
approximated from WAMIT data.  
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4. Added mass is the mass of fluid surrounding the buoy which is accelerated with 

buoy displacement is approximated to a value and calculated from WAMIT data. 
  

5. Only displacement and PTO force are constrained in the MPC optimization 
problem. Future work will include adding a constraint on velocity.  
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2 Wave Energy Converter Model 
After introducing the spherical, point absorber wave energy converter the model 
approach is summarized and the model assumptions are provided. This is followed by a 
more detailed description of the model terms. 

2.1 Point Absorber Introduction 
Consider the WEC below that uses a spherical buoy and a power take-off device (PTO) 
whose base is fixed to the seafloor. The waves cause the buoy to oscillate vertically 
resulting in relative velocity between the PTO's top and bottom. This provides an 
opportunity to convert kinetic energy into electrical energy. In this study, the PTO is 
considered ideal and can flow power both into and out of the buoy which is assumed to 
only move vertically. It's well known that adding energy to the buoy, in a carefully 
controlled manner, can result in greater net extraction over several periods of oscillation. 
The model predictive controller (MPC) described later will seek to apply a force to the 
buoy that maximizes the energy extraction or −∫ 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝. 𝑧̇𝑧(𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇

0  

where T is the control horizon,  𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 is the force applied to the buoy by the PTO and  𝑧̇𝑧(𝑡𝑡)is 
the buoy's vertical speed. 

 

Figure 2.1. Spherical buoy point absorber WEC  

A free body diagram of the buoy is shown in Figure 2.2 below where µ is the added mass 
and represents a layer of water that surrounds and moves with the buoy [12]. The 
excitation force, 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒, is caused by the incident waves. Depending on the model approach, 
it can also include effects such as diffraction and scattering. In this study, we are only 
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considering incident wave forces since the others are small in comparison [11]. The 
radiation damping is denoted as 𝐹𝐹𝑅𝑅 and captures the transfer of kinetic energy from the 
buoy to the water. It should be noted that µ and 𝐹𝐹𝑅𝑅  are two terms from the total radiation 
force, but segregated based on their effect on buoy acceleration and speed. The 
hydrostatic force, 𝐹𝐹ℎ, is also known as the Archimedes force due to the displaced water 
volume.  

 

 

Figure 2.2. Sign conventions for forces acting on the spherical buoy of WEC  

Applying Newton’s Second Law to the free body diagram gives the WEC equation of 
motion can be  –  

 (𝑚𝑚 + µ)𝑧̈𝑧(𝑡𝑡) = 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) + 𝐹𝐹ℎ(𝑡𝑡) + 𝐹𝐹𝑅𝑅 + 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) (1) 

Many WEC control studies assume linear models for both  𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 and  𝐹𝐹ℎ. For example, if a 
spherical buoy, whose draught line is equal to its radius  𝑅𝑅, has small motion, then  𝐹𝐹ℎ can 
be approximated by a linear stiffness term, 𝐾𝐾ℎ. 𝑧𝑧(𝑡𝑡) where 𝐾𝐾ℎ =  −𝜋𝜋𝜋𝜋𝜋𝜋𝑅𝑅2 where ρ is the 
density of water and 𝑔𝑔 is the acceleration due to gravity. In this study both  𝐹𝐹ℎ and  𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 
will be modeled using nonlinear expressions that account for the fact that the buoy's 
geometry is not cylindrical and thus both the hydrostatic and hydrodynamic forces are 
nonlinear in both the buoy's displacement, 𝑧𝑧(𝑡𝑡) and the wave elevation, 𝜂𝜂. These forcing 
terms are called the nonlinear static and dynamic Froude-Krylov forces.  
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Model Assumptions 

1. The buoy only moves in the vertical direction 

2. The PTO is ideal 

3. The wave force is due to the incident waves 

4. The incident wave profile is known in advance commensurate with the control horizon 

The "truth model" used in this study will always use the nonlinear FK forces. Two versions 
of MPC will then be examined where the MPC's model uses: (1) linear FK forces, which 
is typically done in the literature, and (2) nonlinear FK forces. Before describing the MPC 
control system, more detailed development of  𝐹𝐹ℎ and  𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒, are provided below. 

2.2 Static and Dynamic Nonlinear Froude-Krylov Forces 
The nonlinear FK model used here is the same as described in [11]. Using a cylindrical 
coordinate parameterization of a buoy,  

 𝑥𝑥 = 𝑓𝑓(𝜎𝜎)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 𝑦𝑦 = 𝑓𝑓(𝜎𝜎)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 𝑧𝑧 =  𝜎𝜎 

where  𝑓𝑓(𝜎𝜎) is the sphere radius as a function of the vertical variable  𝜎𝜎, they developed 
the general equation for the total (static and dynamic) FK force as 

𝐹𝐹𝐹𝐹𝐹𝐹 =  −2𝜋𝜋𝜋𝜋𝜋𝜋� 𝑃𝑃. 𝑓𝑓(𝜎𝜎). 𝑓𝑓′(𝜎𝜎). 𝑑𝑑𝑑𝑑
𝜂𝜂

(−𝑅𝑅+𝑧𝑧−𝜂𝜂)
 

where eta is wave elevation at the center of the buoy, P is the pressure exerted on the buoy 
by the water. The pressure was then approximated using 

𝑃𝑃 =  𝜌𝜌𝜌𝜌𝜌𝜌𝑒𝑒𝜒𝜒𝜒𝜒 − 𝜌𝜌𝜌𝜌𝜌𝜌 

where 𝜒𝜒 is the wavenumber, 𝜂𝜂 is the wave elevation. The first term in P generates the 
dynamic FK force and the second term produces the static FK force. For a sphere whose 
radius and  draught lines are both R the expressions are: 

 𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛 = 2𝜋𝜋𝜋𝜋𝜋𝜋 �𝜂𝜂
3

3
− 𝑧𝑧. 𝜂𝜂

2

2
− (𝑧𝑧−ℎ𝑜𝑜)3

3
+ 𝑧𝑧(𝑧𝑧−ℎ𝑜𝑜)2

2
� − 𝑚𝑚𝑚𝑚 (2) 

 𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛 = −2𝜋𝜋 �𝜂𝜂𝜂𝜂𝜂𝜂 �𝑒𝑒
𝜒𝜒𝜒𝜒(𝜒𝜒𝜒𝜒−1)

𝜒𝜒2
+ 𝑒𝑒−𝜒𝜒(𝑅𝑅−𝑧𝑧).(𝜒𝜒(𝑅𝑅−𝑧𝑧)+1)

𝜒𝜒2
� − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂�𝑒𝑒𝜒𝜒𝜒𝜒−𝑒𝑒−𝜒𝜒(𝑅𝑅−𝑧𝑧)�

𝜒𝜒
�  (3) 
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As mentioned earlier, the truth model uses the nonlinear FK forces of Eq. 2 and Eq. 3. The 
MPC control comparison below considers the cases where the MPC model uses a linearized 
version of these equations, as compared to the nonlinear ones. The linear version of the 
static and dynamic FK forces are 

 𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 =  −𝜌𝜌𝜌𝜌𝜌𝜌𝑅𝑅2. 𝑧𝑧(𝑡𝑡)  = −𝐾𝐾ℎ. 𝑧𝑧(𝑡𝑡) (4) 

 𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 � 1
𝜒𝜒2
− 𝑒𝑒−𝑅𝑅𝑅𝑅(𝑅𝑅𝑅𝑅+1)

𝜒𝜒2
� (5)  

Summary 

The WEC truth model physical parameters are given in Table 1 where it's also indicated if 
they are independent or derived.  

WEC parameters used –  

Table 2.1 WEC parameters used to simulate spherical buoy  
Sr 
No 

Parameter Notation Value Unit  

1 Radius 𝑅𝑅 2.5 𝑚𝑚 Independent  

2 Draft ℎ𝑜𝑜 2.5 𝑚𝑚 Independent 

3 Mass 𝑚𝑚 32725 𝑘𝑘𝑘𝑘 Derived from buoy 
geometry 

4 Added Mass 𝜇𝜇 14019 𝑘𝑘𝑘𝑘 Derived from 
WAMIT data 

5 Radiation Damping 
Coefficient 

𝐵𝐵 9051.2 𝑁𝑁/(𝑚𝑚/𝑠𝑠) Derived from 
WAMIT data 

6 Linear Hydrostatic 
Stiffness 

𝐾𝐾ℎ 192620 𝑁𝑁/𝑚𝑚 Derived from buoy 
geometry 

7 Water Density 𝜌𝜌 1000 𝑘𝑘𝑘𝑘/𝑚𝑚3 Independent  
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3 Model Predictive Controller 

 

Figure 3.1. Block diagram of MPC for WEC 

Model Predictive Control is an optimization problem with state constraints. Which is 
formulated as shown below –  

The goal is to find optimal 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 force vector that maximizes the absorbed energy  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  −� 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝. 𝑧̇𝑧(𝑡𝑡)
𝑇𝑇

0
 𝑑𝑑𝑑𝑑 

Subject to dynamic WEC system of Eq 1.  – and, depending on the MPC case considered, 
either Eq. 2 and Eq. 3 or Eq. 4 and Eq. 5 for the FK force models. Buoy displacement is 
constrained to 

|𝑧𝑧| < 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 

and the PTO force is constrained to 

�𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝� < 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 

 

At each time step, MPC needs an input of excitation force predicted in few seconds in the 
future, this time is called prediction horizon defined in the MPC problem. Based on 
available excitation force prediction, past control action, current states of WEC, and state 
constraints defined at each time step, MPC formulates its control action over the prediction 
horizon. Once control action is planned over the prediction horizon, the first control action 
is selected from the vector of PTO force planned over the prediction horizon and is 
implemented on WEC nonlinear model. 
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Table 3.1 MPC parameters used in simulation 
Sr No MPC Parameter Value Unit 
1 Prediction Horizon 3 sec 
2 Control Horizon 3 sec 
3 Simulation Update Time 0.05 sec 
4 Control Update Time  0.1 sec 

 

In this report, the prediction horizon chosen is 3 sec, the control horizon is 3 sec, the 
simulation update time is 0.05 sec, and the control update time is 0.1 sec. The control action 
is updated after every 0.1 sec of simulation. Fpto constraint is ± 150000 N and 
Displacement constraint is ± 1 m. MPC can switch between LMPC and NLMPC. The 
control action is fed to a nonlinear WEC plant. 

Table 3.2 Constraints used for MPC simulation 
Sr No MPC Parameter Value Unit 
1 Displacement ± 1 m 
2 PTO force ± 150000 N 
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4 Results And Discussions  
Results of WEC motion, power, and energy absorbed by WEC with LMPC and NLMPC 
are discussed in this section.  

4.1 Bang-Bang Control in MPC 
In Optimal control problems, where control force is bounded between lower and upper 
bounds, it is possible that control force only switches between lower bound and upper 
bound. Which is a case of bang-bang control. This can be observed in MPC designed to 
simulate spherical-shaped buoy of WEC.  

 

Figure 4.1.1. Bang-bang control of WEC with PTO force limit of ± 5000 N 

Fig. 4.1.1. illustrates that MPC is extracting energy from WEC by keeping PTO force in 
phase with the velocity at each instant.  

When PTO force is lowered at 5000 N, a classic bang-bang solution is obtained as shown 
in Fig. 4.1.1. However, due to less PTO force, the displacement of the WEC buoy does not 
reach its desired displacement limits. Hence, the PTO force limit is increased to ± 150000 
N for the WEC buoy to hit the displacement limits of ± 1 m.  

 

 



www.manaraa.com

11 

 

Figure 4.1.2. PTO force and velocity with PTO limits ±150000 N. 

With increasing PTO limits to push buoy to its displacement limit, it is observed that the 
MPC will not give an ideal bang-bang solution as shown in Fig. 4.1.2. 

 

Figure 4.1.3. Comparison of displacement for PTO force limits of ±150000N Vs ±5000N 
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Figure 4.1.4. Comparison of velocity for PTO force limits of ±150000N Vs ±5000N 

From Fig. 4.1.3. and Fig.4.1.4., With increasing PTO limits to ± 150000 N, displacement 
reaches the set limit of ± 1 m. But at the same time, it is observed that large PTO force 
pushes the spherical buoy to its displacement limits and causes higher velocity amplitudes 
to harvest more energy from WEC.  

 

 

Figure 4.1.5. Comparison of energy absorbed with PTO force limits ±5000N and 
±150000N 
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As shown in Fig. 4.1.5., with increasing PTO limits, energy absorbed increases and yields 
nonideal bang-bang solution shown in Fig. 4.1.2. 

4.2 MPC In Regular Waves 

 

Figure 4.2.1. Comparison of displacement of WEC buoy for linear MPC vs NLMPC – 
regular waves 

 

 

Figure 4.2.2. Energy absorbed in linear MPC and NLMPC for regular waves. 
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It is observed from Fig. 4.2.1. and Fig.4.2.2., as the LMPC model has not modeled the 
nonlinearity of the WEC plant correctly,  

Energy harvested for regular waves in NLMPC is more than linear MPC by 5.6 %  for the 
same PTO force and displacement limits. 

 

4.3 Comparison of Nonlinear and Linear MPC Results 
Results of increasing PTO limits were discussed in section 4.1. A spherical buoy was 
simulated for regular waves and results using LMPC and NLMPC models controlling 
nonlinear WEC plant were compared in section 4.2. 

From Fig 4.2.1., As the WEC plant dynamics is nonlinear, the LMPC and NLMPC both  
are able to keep the displacement within defined constraints at all points in the simulation.   

From Fig. 4.2.1. – Fig. 4.2.2., it is observed that as both controllers are controlling the 
nonlinear WEC model with nonlinear hydrostatic stiffness coefficient, NLMPC performs 
better than LMPC model. NLMPC absorbs more energy when controlling the nonlinear 
WEC plant than linear MPC as shown in Fig. 4.2.2. 

The velocity is not constrained in this simulation. Hence, increasing PTO limits will 
increase the velocity amplitudes to absorb more energy as shown in Fig. 4.1.4.  

If the maximum excitation force of waves in a particular area of lakeshore or seashore is 
known, selecting a generator based on motion constraints and the maximum possible 
excitation force will help to extract maximum energy from the waves. 
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5 Conclusion 
In this report, the NLMPC model uses realistic nonlinear Froude-Krylov hydrostatic and 
hydrodynamic forces whereas a LMPC uses linearized FK hydrostatic and linearized FK 
dynamic forces which has an assumption of smaller amplitudes of a buoy. These two 
models are compared against each other while controlling the same WEC plant which is 
subjected to nonlinear FK hydrostatic and FK hydrodynamic forces. Results of LMPC and 
a NLMPC are compared in section 4.2.  

LMPC model is designed to work where the buoy is subjected to smaller amplitudes of 
motion. The nonlinearities become significant at larger amplitudes of excitation force 
which causes a higher amplitude of motion of buoy of the non-uniform cross-section..  

It has been successfully demonstrated in this report that NLMPC controlling a nonlinear 
MPC plant will yield more energy than a LMPC model while keeping the state and PTO 
force constraints within defined limits. Modeling a controller replicating the correct 
nonlinear dynamics of a plant is beneficial when the plant experience dominant 
nonlinearities.  

NLMPC is a clear choice for buoy’s of non-uniform cross-sections subjected to higher 
displacements. LMPC can be implemented where waves are not aggressive and cause 
lower amplitudes of WEC buoy motion.  

This simulation of MPC does not focus on real-time implementation on WEC. And the 
wave prediction is assumed ideal, future work will focus on implementing more realistic 
wave prediction algorithms which will benefit the practical implementation. 
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